Abstract
AbstractThe full quasistatic thermomechanical system of PDEs, describing water diffusion with the possibility of freezing and melting in a visco-elasto-plastic porous solid, is studied in detail under the hypothesis that the pressure-saturation hysteresis relation is given in terms of the Preisach hysteresis operator. The resulting system of balance equations for mass, momentum, and energy coupled with the phase dynamics equation is shown to admit a global solution under general assumptions on the data.
Funder
Austrian Science Fund
Grantová Agentura Ceské Republiky
Ministerstvo S̆kolství, Mládez̆e a Telovýchovy
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference22 articles.
1. Adams, R.A.: Anisotropic Sobolev inequalities. Časopis pro pěstování matematiky 113(3), 267–279 (1988)
2. Albers, B., Krejčí, P.: Unsaturated porous media flow with thermomechanical interaction. Math. Meth. Appl. Sci. 39(9), 2220–2238 (2016)
3. Besov, O.V., Il’in, V.P., Nikol’skii, S.M.: Integral Representations of Functions and Imbedding Theorems. Scripta Series in Mathematics. Halsted Press (John Wiley & Sons): New York-Toronto, Ont.-London; 1978 (Vol. I), 1979 (Vol. II). Russian version Nauka: Moscow; 1975
4. Detmann, B., Krejčí, P., Rocca, E.: Solvability of an unsaturated porous media flow problem with thermomechanical interaction. SIAM J. Math. Anal. 48, 4175–4201 (2016)
5. Edmunds, D.E., Edmunds, R.M.: Embeddings of anisotropic Sobolev spaces. Arch. Ration. Mech. Anal. 94, 245–252 (1986)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献