Abstract
AbstractLet $$\Omega \subset \mathbb {R}^n$$
Ω
⊂
R
n
, $$n\ge 2$$
n
≥
2
, be a non-empty, bounded, open and convex set and let f be a positive and non-increasing function depending only on the distance from the boundary of $$\Omega $$
Ω
. We consider the p-torsional rigidity associated to $$\Omega $$
Ω
for the Poisson problem with Dirichlet boundary conditions, denoted by $$T_{f,p}(\Omega )$$
T
f
,
p
(
Ω
)
. Firstly, we prove a Pólya type lower bound for $$T_{f,p}(\Omega )$$
T
f
,
p
(
Ω
)
in any dimension; then, we consider the planar case and we provide two quantitative estimates in the case $$f\equiv 1 $$
f
≡
1
.
Funder
Alexander von Humboldt-Stiftung
Gruppo Nazionale per l’Analisi Matematica, la Probabilitàe le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference22 articles.
1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)
2. Bonnesen,T., Fenchel, W.: Theory of convex bodies. In: Boron, L., Christenson, C., Smith B. (eds.) BCS Associates, Moscow, ID, 1987. Translated from the German
3. Lorenzo, L.: On principal frequencies and isoperimetric ratios in convex sets. Ann. Fac. Sci. Toulouse Math. 29(4), 977–1005 (2020)
4. Brasco, L., De Philippis, G.: Spectral inequalities in quantitative form. In: Shape optimization and spectral theory, pp. 201–281. De Gruyter Open, Warsaw (2017)
5. Brasco, L., De Philippis, G., Velichkov, B.: Faber-Krahn inequalities in sharp quantitative form. Duke Math. J. 164(9), 1777–1831 (2015)