Abstract
AbstractIn this work we investigate the long-time behavior for Markov processes obtained as the unique mild solution to stochastic partial differential equations in a Hilbert space. We analyze the existence and characterization of invariant measures as well as convergence of transition probabilities. While in the existing literature typically uniqueness of invariant measures is studied, we focus on the case where the uniqueness of invariant measures fails to hold. Namely, introducing a generalized dissipativity condition combined with a decomposition of the Hilbert space, we prove the existence of multiple limiting distributions in dependence of the initial state of the process and study the convergence of transition probabilities in the Wasserstein 2-distance. Finally, we apply our results to Lévy driven Ornstein–Uhlenbeck processes, the Heath–Jarrow–Morton–Musiela equation as well as to stochastic partial differential equations with delay.
Funder
STORM, Research Founding of Norway
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献