Introducing seasonal snow memory into the RUSLE

Author:

Mouris KilianORCID,Schwindt SebastianORCID,Haun StefanORCID,Morales Oreamuno Maria Fernanda,Wieprecht SilkeORCID

Abstract

Abstract Purpose The sediment supply to rivers, lakes, and reservoirs has a great influence on hydro-morphological processes. For instance, long-term predictions of bathymetric change for modeling climate change scenarios require an objective calculation procedure of sediment load as a function of catchment characteristics and hydro-climatic parameters. Thus, the overarching objective of this study is to develop viable and objective sediment load assessment methods in data-sparse regions. Methods This study uses the Revised Universal Soil Loss Equation (RUSLE) and the SEdiment Delivery Distributed (SEDD) model to predict soil erosion and sediment transport in data-sparse catchments. The novel algorithmic methods build on free datasets, such as satellite and reanalysis data. Novelty stems from the usage of freely available datasets and the introduction of a seasonal snow memory into the RUSLE. In particular, the methods account for non-erosive snowfall, its accumulation over months as a function of temperature, and erosive snowmelt months after the snow fell. Results Model accuracy parameters in the form of Pearson’s r and Nash–Sutcliffe efficiency indicate that data interpolation with climate reanalysis and satellite imagery enables viable sediment load predictions in data-sparse regions. The accuracy of the model chain further improves when snow memory is added to the RUSLE. Non-erosivity of snowfall makes the most significant increase in model accuracy. Conclusion The novel snow memory methods represent a major improvement for estimating suspended sediment loads with the empirical RUSLE. Thus, the influence of snow processes on soil erosion and sediment load should be considered in any analysis of mountainous catchments.

Funder

Baden-Württemberg Stiftung

JPI Climate

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3