Holistic multi-class classification & grading of diabetic foot ulcerations from plantar thermal images using deep learning

Author:

Muralidhara ShishirORCID,Lucieri Adriano,Dengel Andreas,Ahmed Sheraz

Abstract

Abstract Purpose Diabetic foot is a common complication associated with diabetes mellitus (DM) leading to ulcerations in the feet. Due to diabetic neuropathy, most patients have reduced sensitivity to pain. As a result, minor injuries go unnoticed and progress into ulcers. The timely detection of potential ulceration points and intervention is crucial in preventing amputation. Changes in plantar temperature are one of the early signs of ulceration. Previous studies have focused on either binary classification or grading of DM severity, but neglect the holistic consideration of the problem. Moreover, multi-class studies exhibit severe performance variations between different classes. Methods We propose a new convolutional neural network for discrimination between non-DM and five DM severity grades from plantar thermal images and compare its performance against pre-trained networks such as AlexNet and related works. We address the lack of data and imbalanced class distribution, prevalent in prior work, achieving well-balanced classification performance. Results Our proposed model achieved the best performance with a mean accuracy of 0.9827, mean sensitivity of 0.9684 and mean specificity of 0.9892 in combined diabetic foot detection and grading. Conclusion To the best of our knowledge, this study sets a new state-of-the-art in plantar foot thermogram detection and grading, while being the first to implement a holistic multi-class classification and grading solution. Reliable automatic thermogram grading is a first step towards the development of smart health devices for DM patients.

Funder

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3