Improving quantum genetic optimization through granular computing

Author:

Acampora GiovanniORCID,Vitiello Autilia

Abstract

AbstractQuantum computers promise to revolutionize the world of computing thanks to some features of quantum mechanics that can enable massive parallelism in computation. This benefit may be particularly relevant in the design of evolutionary algorithms, where the quantum paradigm could support the exploration of multiple regions of the search space in a concurrent way. Although some efforts in this research field are ongoing, the potential of quantum computing is not yet fully expressed due to the limited number of qubits of current quantum processors. This limitation is even more acute when one wants to deal with continuous optimization problems, where the search space is potentially infinite. The goal of this paper is to address this limitation by introducing a hybrid and granular approach to quantum algorithm design, specifically designed for genetic optimization. This approach is defined as hybrid, because it uses a digital computer to evaluate fitness functions, and a quantum processor to evolve the genetic population; moreover, it uses granular computing to hierarchically reduce the size of the search space of a problem, so that good near-optimal solutions can be identified even on small quantum computers. As shown in the experiments, where IBM Q family processors are used, the usage of a granular computation scheme statistically enhances the performance of the state-of-the-art evolutionary algorithm implemented on quantum computers, when it is run to optimize well-known benchmark continuous functions.

Funder

International Business Machines Corporation

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Science Applications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3