Author:
Kim Young Jun,Lim Sung Soo,Jeong Se-Yeong,Yoon Ji Won
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Siddiqui ZA, Park U, Lee SW, Jung NJ, Choi M, Lim C, Seo JH (2018) Robust powerline equipment inspection system based on a convolutional neural network. Sensors 18(11):3837
2. Tao X, Zhang D, Wang Z, Liu X, Zhang H, Xu D (2018) Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans Syst Man Cybernet Syst 50(4):1486–1498
3. Chen H, He Z, Shi B, Zhong T (2019) Research on recognition method of electrical components based on YOLO V3. IEEE Access 7:157818–157829
4. Bochkovskiy A, Wang CY, Liao HYM (2020) YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934
5. Redmon J, Farhadi A (2018) Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767