On the Anisotropic Impact Behavior of an Additively Manufactured AlSi10Mg Alloy in Different Heat Treatment Conditions

Author:

Giovagnoli Maverick,Tocci Marialaura,Fortini Annalisa,Merlin Mattia,Ferroni Matteo,Pola Annalisa

Abstract

AbstractThe present work deals with the anisotropic high-strain rate behavior of laser-powder bed fusion (L-PBF) produced AlSi10Mg alloy in different heat treatment conditions. Impact specimens were produced with different orientations towards building platform and U-notch positions to assess the anisotropic properties. Besides the as-built material, several heat treatments were considered, including annealing, standard T6, hot isostatic pressing (HIP), HIP plus T6, and a recently proposed T6 at high pressure. The high-strain rate behavior was investigated by conducting Charpy impact tests, while material characterization was performed by scanning electron microscopy and x-ray diffraction. Results show that as-built and annealed alloys display significant anisotropic impact properties, whereas samples heat-treated at high temperatures generally have more consistent behavior. A coupled microstructural and fractographic investigation highlights that mitigation of anisotropy descends from the recovery of microstructural heterogeneity of the Si phase after heat treatment at high temperatures. This does not happen for both grain morphology or crystallographic structure, which are not significantly altered after the heat treatment. The present study aims to fill the gap in the literature regarding the anisotropic high-strain rate behavior of additively manufactured Al alloys and provide useful insights for mitigation of anisotropy by heat treatment.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3