Effect of Temperature on Sliding Wear Behavior of Ti-6Al-4V Alloy Processed by Powder Bed Fusion Additive Manufacturing Techniques

Author:

Li Hua,Chen Zhan Wen,Ramezani MaziarORCID

Abstract

AbstractTi-6Al-4V is suitable for powder bed fusion additive manufacturing processes; however, until now, limited studies are conducted to investigate the high temperature tribological performance of Ti-6Al-4V samples made by selective laser melting (SLM) and electron beam melting (EBM) techniques. This paper investigated dry sliding wear resistance of Ti-6Al-4V alloy manufactured by SLM, EBM and conventional processes at elevated temperatures up to 600 °C in contact with WC-Co. Linear reciprocating sliding wear tests were carried out under different applied loads and temperatures, and different wear mechanisms were identified and related to the manufacturing technique. Deviations of wear track width measurements indicated shape irregularly, which has been presented and discussed by SEM images of the wear tracks. Energy-dispersive x-ray analysis of surface layer showed how increasing temperature affects the surface oxide layer and debris. The results showed that for all three types of samples, the oxygen richer oxide debris layer at higher temperatures provided a protective layer with higher wear resistance, although strength and hardness of Ti-6Al-4V are lower at a higher temperatures. So, the combination of these two effects results in no significant effect of temperature on wear rate.

Funder

Auckland University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3