Abstract
AbstractLet $$B_E$$
B
E
be the open unit ball of a complex finite or infinite dimensional Hilbert space E and consider the space $$\mathcal {B}(B_E)$$
B
(
B
E
)
of Bloch functions on $$B_E$$
B
E
. Using Lipschitz continuity of the dilation map on $$B_E$$
B
E
given by $$x \mapsto (1-\Vert x\Vert ^2) \mathcal {R}f(x)$$
x
↦
(
1
-
‖
x
‖
2
)
R
f
(
x
)
for $$x \in B_E$$
x
∈
B
E
, where $$\mathcal {R}f$$
R
f
denotes the radial derivative of $$f \in \mathcal {B}(B_E)$$
f
∈
B
(
B
E
)
, we study when a composition operator on $$\mathcal {B}(B_E)$$
B
(
B
E
)
is bounded below.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献