$$G_2$$-instantons on Resolutions of $$G_2$$-orbifolds

Author:

Platt DanielORCID

Abstract

AbstractWe explain a construction of $$G_2$$ G 2 -instantons on manifolds obtained by resolving $$G_2$$ G 2 -orbifolds. This includes the case of $$G_2$$ G 2 -instantons on resolutions of $$T^7/\Gamma $$ T 7 / Γ as a special case. The ingredients needed are a $$G_2$$ G 2 -instanton on the orbifold and a Fueter section over the singular set of the orbifold which are used in a gluing construction. In the general case, we make the very restrictive assumption that the Fueter section is pointwise rigid. In the special case of resolutions of $$T^7/\Gamma $$ T 7 / Γ , improved control over the torsion-free $$G_2$$ G 2 -structure allows to remove this assumption. As an application, we construct a large number of $$G_2$$ G 2 -instantons on the simplest example of a resolution of $$T^7/\Gamma $$ T 7 / Γ . We also construct one new example of a $$G_2$$ G 2 -instanton on the resolution of $$(T^3 \times \text {K3})/\mathbb {Z}^2_2$$ ( T 3 × K3 ) / Z 2 2 .

Funder

Engineering and Physical Sciences Research Council

King’s College London

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Bader, U.: Which Lie groups have finitely many conjugacy classes of subgroups of fixed isomorphism type? MathOverflow (2021). https://mathoverflow.net/q/401777 (version: 2021-08-15)

2. Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

3. Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10. Springer-Verlag, Berlin (1987)

4. Calabi, E.: The space of Kahler metrics. Proc. Int. Congress Math. Amsterdam 2, 206–7 (1954)

5. Calabi, E.: On Kähler manifolds with vanishing canonical class. In: Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz, pp. 78–89. Princeton University Press, Princeton, NJ (1957)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3