Abstract
AbstractWe explain a construction of $$G_2$$
G
2
-instantons on manifolds obtained by resolving $$G_2$$
G
2
-orbifolds. This includes the case of $$G_2$$
G
2
-instantons on resolutions of $$T^7/\Gamma $$
T
7
/
Γ
as a special case. The ingredients needed are a $$G_2$$
G
2
-instanton on the orbifold and a Fueter section over the singular set of the orbifold which are used in a gluing construction. In the general case, we make the very restrictive assumption that the Fueter section is pointwise rigid. In the special case of resolutions of $$T^7/\Gamma $$
T
7
/
Γ
, improved control over the torsion-free $$G_2$$
G
2
-structure allows to remove this assumption. As an application, we construct a large number of $$G_2$$
G
2
-instantons on the simplest example of a resolution of $$T^7/\Gamma $$
T
7
/
Γ
. We also construct one new example of a $$G_2$$
G
2
-instanton on the resolution of $$(T^3 \times \text {K3})/\mathbb {Z}^2_2$$
(
T
3
×
K3
)
/
Z
2
2
.
Funder
Engineering and Physical Sciences Research Council
King’s College London
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Bader, U.: Which Lie groups have finitely many conjugacy classes of subgroups of fixed isomorphism type? MathOverflow (2021). https://mathoverflow.net/q/401777 (version: 2021-08-15)
2. Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)
3. Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10. Springer-Verlag, Berlin (1987)
4. Calabi, E.: The space of Kahler metrics. Proc. Int. Congress Math. Amsterdam 2, 206–7 (1954)
5. Calabi, E.: On Kähler manifolds with vanishing canonical class. In: Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz, pp. 78–89. Princeton University Press, Princeton, NJ (1957)