Author:
Kleinschmidt Axel,Köhl Ralf,Lautenbacher Robin,Nicolai Hermann
Abstract
AbstractWe consider the subalgebras of split real, non-twisted affine Kac–Moody Lie algebras that are fixed by the Cartan–Chevalley involution. These infinite-dimensional Lie algebras are not of Kac–Moody type and admit finite-dimensional unfaithful representations. We exhibit a formulation of these algebras in terms of $${\mathbb {N}}$$
N
-graded Lie algebras that allows the construction of a large class of representations using the techniques of induced representations. We study how these representations relate to previously established spinor representations as they arise in the theory of supergravity and work out a detailed example in the case of the affine extension of $${\mathfrak {e}}_8$$
e
8
.
Funder
Horizon 2020 Framework Programme
Deutsche Forschungsgemeinschaft
Studienstiftung des Deutschen Volkes
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference37 articles.
1. Abramenko, P., Mühlherr, B.: Présentations de certaines $$BN$$-paires jumelées comme sommes amalgamées. C. R. Acad. Sci. Paris Sér. I Math. 325, 701–706 (1997)
2. Berman, S.: On generators and relations for certain involutory subalgebras of Kac–Moody Lie algebras. Commun. Algebra 17, 3165–3185 (1989). https://doi.org/10.1080/00927878908823899
3. Carbone, L., Feingold, A.J., Freyn Walter, W.: A lightcone embedding of the twin building of a hyperbolic Kac–Moody group. SIGMA 16, 045 (2020)
4. Damour, T., Hillmann, C.: Fermionic Kac–Moody billiards and supergravity. JHEP 08, 100 (2009). https://doi.org/10.1088/1126-6708/2009/08/100. arXiv:0906.3116
5. Damour, T., Kleinschmidt, A., Nicolai, H.: Hidden symmetries and the fermionic sector of eleven-dimensional supergravity. Phys. Lett. B 634, 319–324 (2006). https://doi.org/10.1016/j.physletb.2006.01.015. arXiv:hep-th/0512163
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献