Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Artebani, M., Boissière, S., Sarti, A.: The Berglund-Hübsch-Chiodo-Ruan mirror symmetry for K3 surfaces. J. Math. Pures Appl. (9) 102(4), 758–781 (2014). https://doi.org/10.1016/j.matpur.2014.02.005. (issn: 0021-7824)
2. Cambridge Tracts in Mathematics;A Adem,2007
3. Ahlgren, S., Ono, K., Penniston, D.: Zeta functions of an infinite family of K3 surfaces English (US). Am. J. Math. 124(2), 353–368 (2002). https://doi.org/10.1353/ajm.2002.0007. (issn: 0002-9327)
4. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493–535 (1994). (issn: 1056-3911)
5. Borcea, C.: $$K3$$ surfaces with involution and mirror pairs of Calabi-Yau manifolds. In: Mirror Symmetry, II. Vol. 1. AMS/IP Stud. Adv. Math. Am. Math. Soc., pp. 717–743 (1997)