Abstract
AbstractWe prove that the 2-body operator $$\gamma _{2}^{\Psi }$$
γ
2
Ψ
of a fermionic N-particle state $$\Psi $$
Ψ
obeys $$\Vert \gamma _{2}^{\Psi }\Vert _{\textrm{HS}}\le \sqrt{5}N$$
‖
γ
2
Ψ
‖
HS
≤
5
N
, which complements the bound of Yang (Rev Mod Phys 34:694, 1962) that $$\Vert \gamma _{2}^{\Psi }\Vert _{\textrm{op}}\le N$$
‖
γ
2
Ψ
‖
op
≤
N
. This estimate furthermore resolves a conjecture of Carlen–Lieb–Reuvers (Commun Math Phys 344:655–671, 2016) concerning the entropy of the normalized 2-body operator. We also prove that the Hilbert–Schmidt norm of the truncated 2-body operator $$\gamma _{2}^{\Psi ,T}$$
γ
2
Ψ
,
T
obeys the inequality $$\Vert \gamma _{2}^{\Psi ,T}\Vert _{\textrm{HS}}\le \sqrt{5N\,\textrm{tr}\,(\gamma _{1}^{\Psi }(1-\gamma _{1}^{\Psi }))}$$
‖
γ
2
Ψ
,
T
‖
HS
≤
5
N
tr
(
γ
1
Ψ
(
1
-
γ
1
Ψ
)
)
.
Funder
Deutsche Forschungsgemeinschaft
Ludwig-Maximilians-Universität München
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献