Abstract
AbstractUsing elementary methods we obtain a power-law lower bound on the two-point function of the planar XY spin model at low temperatures. This was famously first rigorously obtained by Fröhlich and Spencer (Commun Math Phys 81(4):527–602, 1981) and establishes a Berezinskii–Kosterlitz–Thouless phase transition in the model. Our argument relies on a new loop representation of spin correlations, a recent result of Lammers (Probab Relat Fields, 2021) on delocalisation of general integer-valued height functions, and classical correlation inequalities.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference36 articles.
1. Aizenman, M., Simon, B.: A comparison of plane rotor and Ising models. Phys. Lett. A 76(3), 281–282 (1980)
2. Aizenman, M., Harel, M., Peled, R., Shapiro, J.: Depinning in the integer-valued Gaussian Field and the BKT phase of the 2D Villain model (2021). arXiv preprint arXiv:2110.09498
3. Benassi, C., Lees, B., Ueltschi, D.: Correlation Inequalities for Classical and Quantum XY Models. In: Michelangeli, A., Dell’Antonio, G. (eds.), Springer (2017)
4. Benassi, C., Ueltschi, D.: Loop correlations in random wire models. Commun. Math. Phys. 374(2), 525–547 (2020)
5. Berezinskii, V.L.: Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems. Sov. Phys. JETP 32, 493–500 (1971)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献