Pore size distribution, their geometry and connectivity in deeply buried Paleogene Es1 sandstone reservoir, Nanpu Sag, East China

Author:

Kashif Muhammad,Cao Yingchang,Yuan Guanghui,Asif Muhammad,Javed Kamran,Mendez Jose Nicanor,Khan Danish,Miruo Lin

Abstract

Abstract The study of pore characteristics is of great importance in reservoir evaluation, especially in deeply buried sandstone. It controls the storage mechanism and reservoir fluid properties of the permeable horizons. The first member of Eocene Shahejie Formation (Es1) sandstone is classified as feldspathic litharenite and lithic arkose. The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Es1 member of Shahejie Formation. The techniques including thin-section petrography, mercury injection capillary pressure (MICP), scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular, intragranular, dissolution and fracture pores. Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir. Pore size and pore throat size distribution are acquired from mercury injection test. Porosity values range from 0.5% to 30%, and permeability ranges 0.006–7000 mD. Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to > 4 µm and 1 nm to 1.60 µm, respectively, by MICP analysis. The mineral composition also plays an important role in protecting the pores with pressure from failure. Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability, whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected, and so they consist of high porosity with low permeability.

Publisher

Elsevier BV

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics,Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3