Combinatorial Generation via Permutation Languages. III. Rectangulations

Author:

Merino ArturoORCID,Mütze TorstenORCID

Abstract

AbstractA generic rectangulation is a partition of a rectangle into finitely many interior-disjoint rectangles, such that no four rectangles meet in a point. In this work we present a versatile algorithmic framework for exhaustively generating a large variety of different classes of generic rectangulations. Our algorithms work under very mild assumptions, and apply to a large number of rectangulation classes known from the literature, such as generic rectangulations, diagonal rectangulations, 1-sided/area-universal, block-aligned rectangulations, and their guillotine variants, including aspect-ratio-universal rectangulations. They also apply to classes of rectangulations that are characterized by avoiding certain patterns, and in this work we initiate a systematic investigation of pattern avoidance in rectangulations. Our generation algorithms are efficient, in some cases even loopless or constant amortized time, i.e., each new rectangulation is generated in constant time in the worst case or on average, respectively. Moreover, the Gray codes we obtain are cyclic, and sometimes provably optimal, in the sense that they correspond to a Hamilton cycle on the skeleton of an underlying polytope. These results are obtained by encoding rectangulations as permutations, and by applying our recently developed permutation language framework.

Funder

Deutsche Forschungsgemeinschaft

Grantová Agentura Ceské Republiky

Ministerio de Educación, Gobierno de Chile

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combinatorial generation via permutation languages. VI. Binary trees;European Journal of Combinatorics;2024-12

2. On the characterization of rectangular duals;Notes on Number Theory and Discrete Mathematics;2024-03-09

3. Combinatorial Generation via Permutation Languages. V. Acyclic Orientations;SIAM Journal on Discrete Mathematics;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3