On Compact Packings of Euclidean Space with Spheres of Finitely Many Sizes

Author:

Messerschmidt MiekORCID,Kikianty Eder

Abstract

AbstractFor $$d\in {\mathbb {N}}$$ d N , a compact sphere packing of Euclidean space $${\mathbb {R}}^{d}$$ R d is a set of spheres in $${\mathbb {R}}^{d}$$ R d with disjoint interiors so that the contact hypergraph of the packing is the vertex scheme of a homogeneous simplicial d-complex that covers all of $${\mathbb {R}}^{d}$$ R d . We are motivated by the question: For $$d,n\in {\mathbb {N}}$$ d , n N with $$d,n\ge 2$$ d , n 2 , how many configurations of numbers $$0<r_{0}<r_{1}<\cdots <r_{n-1}=1$$ 0 < r 0 < r 1 < < r n - 1 = 1 can occur as the radii of spheres in a compact sphere packing of $${\mathbb {R}}^{d}$$ R d wherein there occur exactly n sizes of sphere? We introduce what we call ‘heteroperturbative sets’ of labeled triangulations of unit spheres and we discuss the existence of non-trivial examples of heteroperturbative sets. For a fixed heteroperturbative set, we discuss how a compact sphere packing may be associated to the heteroperturbative set or not. We proceed to show, for $$d,n\in {\mathbb {N}}$$ d , n N with $$d,n\ge 2$$ d , n 2 and for a fixed heteroperturbative set, that the collection of all configurations of n distinct positive numbers that can occur as the radii of spheres in a compact packing is finite, when taken over all compact sphere packings of $${\mathbb {R}}^{d}$$ R d which have exactly n sizes of sphere and which are associated to the fixed heteroperturbative set.

Funder

University of Pretoria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3