The Multi-Cover Persistence of Euclidean Balls

Author:

Edelsbrunner HerbertORCID,Osang GeorgORCID

Abstract

AbstractGiven a locally finite $$X \subseteq {{{\mathbb {R}}}}^d$$ X R d and a radius $$r \ge 0$$ r 0 , the k-fold cover of X and r consists of all points in $${{{\mathbb {R}}}}^d$$ R d that have k or more points of X within distance r. We consider two filtrations—one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k—and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in $${{{\mathbb {R}}}}^{d+1}$$ R d + 1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module of Delaunay mosaics that is isomorphic to the persistence module of the multi-covers.

Funder

H2020 European Research Council

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse Higher Order Čech Filtrations;Journal of the ACM;2024-08

2. Geographic style maps for two-dimensional lattices;Acta Crystallographica Section A Foundations and Advances;2023-01-01

3. Polytopal Complex Construction and Use in Persistent Homology;2022 IEEE International Conference on Data Mining Workshops (ICDMW);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3