Topological Art in Simple Galleries

Author:

Bertschinger Daniel,El Maalouly NicolasORCID,Miltzow TillmannORCID,Schnider PatrickORCID,Weber SimonORCID

Abstract

AbstractLet P be a simple polygon, then the art gallery problem is looking for a minimum set of points (guards) that can see every point in P. We say two points $$a,b\in P$$ a , b P can see each other if the line segment $${\text {seg}} (a,b)$$ seg ( a , b ) is contained in P. We denote by V(P) the family of all minimum guard placements. The Hausdorff distance makes V(P) a metric space and thus a topological space. We show homotopy-universality, that is, for every semi-algebraic set S there is a polygon P such that V(P) is homotopy equivalent to S. Furthermore, for various concrete topological spaces T, we describe instances I of the art gallery problem such that V(I) is homeomorphic to T.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Seventh Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science

Reference44 articles.

1. Abrahamsen, M.: Constant-Workspace Algorithms for Visibility Problems in the Plane. MSc thesis, University of Copenhagen (2013). http://hjemmesider.diku.dk/~jyrki/PE-lab/Mikkel/thesis.pdf

2. Abrahamsen, M., Adamaszek, A., Miltzow, T.: Irrational guards are sometimes needed. In: 33rd International Symposium on Computational Geometry (Brisbane 2017). Leibniz International Proceedings in Informatics, vol. 77, # 3. Leibniz-Zent. Inform., Wadern (2017)

3. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is $$\exists {\mathbb{R}} $$-complete. In: 50th Annual ACM SIGACT Symposium on Theory of Computing (Los Angeles 2018), pp. 65–73. ACM, New York (2018)

4. Abrahamsen, M., Kleist, L., Miltzow, T.: Geometric embeddability of complexes is $$\exists {\mathbb{R}}$$-complete (2021). arXiv:2108.02585

5. Abrahamsen, M., Kleist, L., Miltzow, T.: Training neural networks is ER-complete. In: Advances in Neural Information Processing Systems (NIPS), vol. 34, pp. 18293–18306. Curran Associates, Red Hook (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3