Quantifying terminal white bands in Salix from the Yenisei river, Siberia and their relationship to late-season flooding

Author:

Thaxton Richard D.ORCID,Panyushkina Irina P.,Meko David M.,von Arx Georg,Agafonov Leonid I.

Abstract

Abstract Key Message Wood fiber cell wall thickness best characterizes white bands found at the end of certain growth rings in Salix alba. Evidence suggests these features are related to late-season hydrology. Abstract Recent, record-breaking discharge in the Yenisei River, Siberia, is part of a larger trend of increasing river flow in the Arctic driven by Arctic Amplification. These changes in magnitude and timing of discharge can lead to increased risk of extreme flood events, with implications for infrastructure, ecosystems, and climate. To better understand the effect of these changes on riparian tree growth along the lower reaches of the Yenisei River, we collected white willow (Salix alba) cross sections from a fluvial fill flat terrace that occasionally floods when water levels are extremely high. These samples displayed bands of lighter colored wood at the end of certain annual growth rings that we hypothesized were related to flood events. To identify the characteristics and causes of these features, we use an approach known as quantitative wood anatomy (QWA) to measure variation in fiber cell dimensions across tree rings, particularly fiber lumen area (LA) and cell wall thickness (CWT). We investigate (1) which cell parameters and method to extract intra-annual data from annual tree rings best capture terminal white bands identified in Salix, and (2) if these patterns are related to flood magnitude and/or duration. We find that fiber CWT best captures terminal white bands found in Salix rings. Time series derived from CWT measurements correlate with July water-level durations, but at levels too low to be labeled flooding. Although both terminal white bands and July flooding have reduced since 1980, questions remain as to the cause of terminal white bands. Understanding how riparian vegetation responds to changes in hydrology can help us better manage riparian ecosystems and understand the impacts of a changing Arctic hydrological regime.

Funder

Division of Arctic Sciences

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology,Physiology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3