1. Arroyo, I., Woolf, B. P., Burleson, W., Muldner, K., Rai, D., & Tai, M. (2014). A multimedia adaptive tutoring system for mathematics that addresses cognition, metacognition and affect. International Journal of Artificial Intelligence in Education, 24(4), 387–426.
2. Azevedo, R., Harley, J., Trevors, G., Duffy, M., Feyzi-Behnagh, R., Bouchet, F., & Landis, R. (2013). Using trace data to examine the complex roles of cognitive, metacognitive, and emotional self-regulatory processes during learning with multi-agent systems. In R. Azevedo & V. Aleven (Eds.), International handbook of metacognition and learning technologies (pp. 427–449). New York: Springer.
3. Baker, R. S. J. D., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. JEDM Journal of Educational Data Mining, 1(1), 3–17.
4. D’Mello, S., & Graesser, A. (2014). Confusion. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education (pp. 289–310). New York: Routledge.
5. D’Mello, S., Lehman, B., Pekrun, R., & Graesser, A. (2012). Confusion can be beneficial for learning. Learning and Instruction, 29, 1–18.