Author:
Ding Gui-Jun,Feruglio Ferruccio,Liu Xiang-Gan
Abstract
Abstract
We extend the framework of modular invariant supersymmetric theories to encompass invariance under more general discrete groups Γ, that allow the presence of several moduli and make connection with the theory of automorphic forms. Moduli span a coset space G/K, where G is a Lie group and K is a compact subgroup of G, modded out by Γ. For a general choice of G, K, Γ and a generic matter content, we explicitly construct a minimal Kähler potential and a general superpotential, for both rigid and local $$ \mathcal{N} $$
N
= 1 supersymmetric theories. We also specialize our construction to the case G = Sp(2g, ℝ), K = U(g) and Γ = Sp(2g, ℤ), whose automorphic forms are Siegel modular forms. We show how our general theory can be consistently restricted to multi-dimensional regions of the moduli space enjoying residual symmetries. After choosing g = 2, we present several examples of models for lepton and quark masses where Yukawa couplings are Siegel modular forms of level 2.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献