Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Becker, T., Weispfenning, V.: Gröbner bases: a computational approach to commutative algebra. In: Cooperation with Heinz Kredel. Springer, New York (1993) (English)
2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Univ. Innsbruck, Mathematisches Institut (Diss.), Innsbruck (1965) (German)
3. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. Symbolic and algebraic computation, EUROSAM ’79, Int. Symp., Marseille 1979, Lect. Notes Comput. Sci. 72, 3–21 (1979)
4. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Translation from the German, J. Symb. Comput. 41(3-4), 475–511 (2006) (English)
5. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. 4th revised ed. Springer, Cham (2015) (English)