Improving radiation dosimetry with an automated micronucleus scoring system: correction of automated scoring errors

Author:

Lee Younghyun,Jin Young Woo,Seong Ki Moon,Wilkins Ruth C.,Jang Seongjae

Abstract

AbstractRadiation dose estimations performed by automated counting of micronuclei (MN) have been studied for their utility for triage following large-scale radiological incidents; although speed is essential, it also is essential to estimate radiation doses as accurately as possible for long-term epidemiological follow-up. Our goal in this study was to evaluate and improve the performance of automated MN counting for biodosimetry using the cytokinesis-block micronucleus (CBMN) assay. We measured false detection rates and used them to improve the accuracy of dosimetry. The average false-positive rate for binucleated cells was 1.14%; average false-positive and -negative MN rates were 1.03% and 3.50%, respectively. Detection errors seemed to be correlated with radiation dose. Correction of errors by visual inspection of images used for automated counting, called the semi-automated and manual scoring method, increased accuracy of dose estimation. Our findings suggest that dose assessment of the automated MN scoring system can be improved by subsequent error correction, which could be useful for performing biodosimetry on large numbers of people rapidly, accurately, and efficiently.

Funder

Nuclear Safety and Security Commission

Korea Institute of Radiological and Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Radiation,Biophysics

Reference30 articles.

1. Ainsbury EA, Lloyd DC (2010) Dose estimation software for radiation biodosimetry. Health Phys 98(2):290–295. https://doi.org/10.1097/01.HP.0000346305.84577.b4

2. Bonassi S, Fenech M, Lando C, Lin YP, Ceppi M, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R, Bigatti MP, Bolognesi C, Jia C, Di Giorgio M, Ferguson LR, Fucic A, Lima OG, Hrelia P, Krishnaja AP, Lee TK, Migliore L, Mikhalevich L, Mirkova E, Mosesso P, Muller WU, Odagiri Y, Scarffi MR, Szabova E, Vorobtsova I, Vral A, Zijno A (2001) HUman MicroNucleus project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environm Mol Mutag 37(1):31–45

3. Boreham DR, Dolling JA, Maves SR, Siwarungsun N, Mitchel RE (2000) Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes. Radiat Res 153(5 Pt 1):579–586. https://doi.org/10.1667/0033-7587(2000)153[0579:drefaa]2.0.co;2

4. Chung HW, Ryu EK, Kim YJ, Ha SW (1996) Chromosome aberrations in workers of nuclear-power plants. Mutat Res 350(2):307–314

5. Decordier I, Papine A, Plas G, Roesems S, Vande Loock K, Moreno-Palomo J, Cemeli E, Anderson D, Fucic A, Marcos R, Soussaline F, Kirsch-Volders M (2009) Automated image analysis of cytokinesis-blocked micronuclei: an adapted protocol and a validated scoring procedure for biomonitoring. Mutagenesis 24(1):85–93. https://doi.org/10.1093/mutage/gen057

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3