Fitness costs of pyrethroid resistance in the polyphagous pest mite, Halotydeus destructor, under field conditions

Author:

Umina Paul A.ORCID,Maino James L.ORCID,Edwards OwainORCID,Cheng XuanORCID,Binns MatthewORCID,van Rooyen Anthony,Song Sue VernORCID,Weeks AndrewORCID,Arthur Aston L.ORCID,Reynolds Olivia L.ORCID,Hoffmann Ary A.ORCID

Abstract

AbstractThe redlegged earth mite, Halotydeus destructor, is an economically important pest of winter field crops and pastures in Australia, and has evolved field resistance to pyrethroid chemicals through a polymorphism in the voltage-gated parasodium channel leading to knockdown resistance (kdr). In this study, we quantified the rate of reversion to susceptibility of partially resistant H. destructor populations under field conditions in the absence of pesticide exposure. This was conducted over multiple years at two geographically distant locations with mite populations known to possess pyrethroid resistance. Fitness costs associated with pyrethroid resistance were identified through reductions in the frequency of kdr resistance alleles in the absence of pesticides. This was assessed using an amplicon sequencing approach targeting known resistance alleles. We also found that resistance can increase rapidly in frequency after only a single pyrethroid application in the field. Our results highlight that, once established in H. destructor populations, pyrethroid resistance will not easily be lost even after several years, emphasizing the importance of limiting the evolution of resistance in the first place. This helps to explain why pyrethroid resistance in H. destructor continues to persist at very high frequencies in the field and continues to expand within Australia despite the existence of fitness costs. Understanding field fitness costs associated with pesticide resistance is important when devising resistance management strategies for this pest.

Funder

Grains Research and Development Corporation

University of Melbourne

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Insect Science,Ecology, Evolution, Behavior and Systematics,Plant Science,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3