A Formalization of SQL with Nulls

Author:

Ricciotti WilmerORCID,Cheney JamesORCID

Abstract

AbstractSQL is the world’s most popular declarative language, forming the basis of the multi-billion-dollar database industry. Although SQL has been standardized, the full standard is based on ambiguous natural language rather than formal specification. Commercial SQL implementations interpret the standard in different ways, so that, given the same input data, the same query can yield different results depending on the SQL system it is run on. Even for a particular system, mechanically checked formalization of all widely-used features of SQL remains an open problem. The lack of a well-understood formal semantics makes it very difficult to validate the soundness of database implementations. Although formal semantics for fragments of SQL were designed in the past, they usually did not support set and bag operations, lateral joins, nested subqueries, and, crucially, null values. Null values complicate SQL’s semantics in profound ways analogous to null pointers or side-effects in other programming languages. Since certain SQL queries are equivalent in the absence of null values, but produce different results when applied to tables containing incomplete data, semantics which ignore null values are able to prove query equivalences that are unsound in realistic databases. A formal semantics of SQL supporting all the aforementioned features was only proposed recently. In this paper, we report about our mechanization of SQL semantics covering set/bag operations, lateral joins, nested subqueries, and nulls, written in the Coq proof assistant, and describe the validation of key metatheoretic properties. Additionally, we are able to use the same framework to formalize the semantics of a flat relational calculus (with null values), and show a certified translation of its normal forms into SQL.

Funder

European Research CouncilEuropean Research Council

GCHQ

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computational Theory and Mathematics,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QED: A Powerful Query Equivalence Decider for SQL;Proceedings of the VLDB Endowment;2024-07

2. VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints;Proceedings of the ACM on Programming Languages;2024-04-29

3. Comprehending queries over finite maps;International Symposium on Principles and Practice of Declarative Programming;2023-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3