A benchmark dataset for community deception algorithms

Author:

Fionda Valeria

Abstract

AbstractThis paper introduces the Better Hide Communities (BHC) benchmark dataset aimed at standardizing evaluations in community deception across networks. BHC addresses the need for a common framework to assess the effectiveness of existing and perspective deception strategies by enabling their comparative analyses. BHC serves as a foundation for future work in developing sophisticated algorithms for community deception, enhancing the understanding of algorithmic abilities to employ deceptive measures within communities. Additionally, it offers valuable insights into the varying degrees of resilience that different detection algorithms exhibit against deception strategies.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Università della Calabria

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech-Theory E 10:P10008

2. Bonald T, Charpentier B, Galland A, Hollocou A (2018) Hierarchical graph clustering using node pair sampling. arxiv:abs/1806.01664

3. Cazabet R, Rossetti G, Milli L (2022) CDlib: a python library to extract, compare and evaluate communities from complex networks (extended abstract). In: Proceedings of MARAMI , CEUR-WS.org

4. Chakraborty T, Srinivasan S, Ganguly N, Mukherjee A, Bhowmick S (2016) Permanence and community structure in complex networks. ACM TKDD 11(2):1–34

5. Chen J, Chen L, Chen Y, Zhao M, Shanqing Yu, Xuan Q, Yang X (2019) Ga-based q-attack on community detection. IEEE Trans Comput Soc Syst 6(3):491–503

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3