Abstract
AbstractGrouping well-connected nodes that also result in label-homogeneous clusters is a task often known as attribute-aware community discovery. While approaching node-enriched graph clustering methods, rigorous tools need to be developed for evaluating the quality of the resulting partitions. In this work, we present X-Mark, a model that generates synthetic node-attributed graphs with planted communities. Its novelty consists in forming communities and node labels contextually while handling categorical or continuous attributive information. Moreover, we propose a comparison between attribute-aware algorithms, testing them against our benchmark. Accordingly to different classification schema from recent state-of-the-art surveys, our results suggest that X-Mark can shed light on the differences between several families of algorithms.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Human-Computer Interaction,Media Technology,Communication,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献