Community deception: from undirected to directed networks

Author:

Fionda Valeria,Madi Saif Aldeen,Pirrò GiuseppeORCID

Abstract

AbstractCommunity deception is about hiding a target community that wants to remain below the radar of community detection algorithms. The goal is to devise algorithms that, given a maximum number of updates (e.g., edge additions and removal), strive to find the best way to perform such updates in order to hide the target community inside the community structure found by a detection algorithm. So far, community deception has only been studied for undirected networks, although many real-world networks (e.g., Twitter) are directed. One way to overcome this problem would be to treat the network as undirected. However, this approach discards potentially helpful information in the edge directions (e.g., A follows B does not imply that B follows A). The aim of this paper is threefold. First, to give an account of the state-of-the-art community deception techniques in undirected networks underlying their peculiarities. Second, to investigate the community deception problem in directed networks and to show how deception techniques proposed for undirected networks should be modified and adapted to work on directed networks. Third, to evaluate deception techniques both in undirected and directed networks. Our experimental evaluation on a variety of (large) directed networks shows that techniques that work well for undirected networks fail short when directly applied to directed networks, thus underlying the need for specific approaches.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Media Technology,Communication,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A benchmark dataset for community deception algorithms;Social Network Analysis and Mining;2024-08-21

2. Community Deception From a Node-Centric Perspective;IEEE Transactions on Network Science and Engineering;2024-01

3. Better Hide Communities: Benchmarking Community Deception Algorithms;Studies in Computational Intelligence;2024

4. Community deception in directed influence networks;Social Network Analysis and Mining;2023-09-25

5. Node-Centric Community Deception Based on Safeness;IEEE Transactions on Computational Social Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3