Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Breuils, S., Nozick, V., Fuchs, L.: Garamon: Geometric algebra library generator. Adv. Appl. Clifford Algebras 2019, submitted to the Topical Collection on Proceedings of AGACSE 2018, IMECC-UNICAMP, Campinas, Brazil, edited by Sebastià Xambó-Descamps and Carlile Lavor
2. Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric algebra of $${\mathbb{R}}^{9,6}$$ . Adv. Appl. Clifford Algebras 28:35 (March 2018), 16 pages.
https://doi.org/10.1007/s00006-018-0851-1
3. Buchholz, S., Tachibana, K., Hitzer, E.: Optimal learning rates for Clifford neurons. In de Sà, Joaquim Marques and Alexandre, Lu’is A. and Duch, Włodzisław and Mandic, Danilo (eds)Artificial Neural Networks – ICANN 2007 (2007), pp. 864–873. 17th International Conference, Porto, Portugal, September 9–13, 2007, Proceedings, Part I, Lecture Notes in Computer Science, vol 4668. Springer, Berlin,
https://doi.org/10.1007/978-3-540-74690-4_88
4. Dorst, L., Van Den Boomgaard, R.: An analytical theory of mathematical morphology (1993).
https://www.researchgate.net/profile/Leo_Dorst/publication/2811399_An_Analytical_Theory_of_Mathematical_Morphology/links/09e41510c0f213ff3b000000.pdf
5. Du, J., Goldman, R., Mann, S.: Modeling 3D geometry in the Clifford algebra $${\mathbb{R}}^{4,4}$$. Adv. Appl. Clifford Algebras 27, 4 (Dec 2017), 3039–3062.
https://doi.org/10.1007/s00006-017-0798-7
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献