Abstract
AbstractComplete hom-Lie superalgebras are considered and some equivalent conditions for a hom-Lie superalgebra to be a complete hom-Lie superalgebra are established. In particular, the relation between decomposition and completeness for a hom-Lie superalgebra is described. Moreover, some conditions that the linear space of $$\alpha ^{s}$$
α
s
-derivations of a hom-Lie superalgebra to be complete and simply complete are obtained.
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. Abdaoui, E.K., Ammar, F., Makhlouf, A.: Hom-alternative, hom-Malcev and hom-Jordan superalgebras. Bull. Malays. Math. Sci. Soc. 40, 439–472 (2017). arXiv:1304.1579v1 [math.RA]
2. Abdaoui, K., Ammar, F., Makhlouf, A.: Constructions and cohomology of hom-Lie color algebras. Commun. Algebra 43(11), 4581–4612 (2015)
3. Abramov, V.: On a graded $$q$$-differential algebra. J. Nonlinear Math. Phys. 13, 1–8 (2006)
4. Abramov, V.: Matrix 3-Lie superalgebras and BRST supersymmetry. Int. J. Geom. Methods Phys. 14(11), 1750160 (2017)
5. Agrebaoui, B., Benali, K., Makhlouf, A.: Representations of simple Hom-Lie algebras. J. Lie Theory 29(4), 1119–1135 (2019)