Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi

Author:

Bodenhausen NatachaORCID,Deslandes-Hérold Gabriel,Waelchli JanORCID,Held Alain,van der Heijden Marcel G. A.ORCID,Schlaeppi KlausORCID

Abstract

AbstractArbuscular mycorrhiza fungi (AMF) are beneficial soil fungi that can promote the growth of their host plants. Accurate quantification of AMF in plant roots is important because the level of colonization is often indicative of the activity of these fungi. Root colonization is traditionally measured with microscopy methods which visualize fungal structures inside roots. Microscopy methods are labor-intensive, and results depend on the observer. In this study, we present a relative qPCR method to quantify AMF in which we normalized the AMF qPCR signal relative to a plant gene. First, we validated the primer pair AMG1F and AM1 in silico, and we show that these primers cover most AMF species present in plant roots without amplifying host DNA. Next, we compared the relative qPCR method with traditional microscopy based on a greenhouse experiment with Petunia plants that ranged from very high to very low levels of AMF root colonization. Finally, by sequencing the qPCR amplicons with MiSeq, we experimentally confirmed that the primer pair excludes plant DNA while amplifying mostly AMF. Most importantly, our relative qPCR approach was capable of discriminating quantitative differences in AMF root colonization and it strongly correlated (Spearman Rho = 0.875) with quantifications by traditional microscopy. Finally, we provide a balanced discussion about the strengths and weaknesses of microscopy and qPCR methods. In conclusion, the tested approach of relative qPCR presents a reliable alternative method to quantify AMF root colonization that is less operator-dependent than traditional microscopy and offers scalability to high-throughput analyses.

Funder

Staatssekretariat für Bildung, Forschung und Innovation

Gebert Rüf Stiftung

University of Basel

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3