Boosting enabled efficient machine learning technique for accurate prediction of crop yield towards precision agriculture

Author:

Nagesh O. Sri,Budaraju Raja Rao,Kulkarni Shriram S.,Vinay M.,Ajibade Samuel-Soma M.,Chopra Meenu,Jawarneh Malik,Kaliyaperumal Karthikeyan

Abstract

AbstractDue to the limited availability of natural resources, it is essential that agricultural productivity keep pace with population growth. Despite unfavorable weather circumstances, this project's major objective is to boost production. As a consequence of technological advancements in agriculture, precision farming as a way for enhancing crop yields is gaining appeal and becoming more prevalent. When it comes to predicting future data, machine learning employs a number of methods, including the creation of models and the acquisition of prediction rules based on past data. In this manuscript, we examine various techniques to machine learning, as well as an automated agricultural yield projection model based on selecting the most relevant features. For the purpose of selecting features, the Grey Level Co-occurrence Matrix method is utilised. For classification, we make use of the AdaBoost Decision Tree, Artificial Neural Network (ANN), and K-Nearest Neighbour (KNN) algorithms. The data set that was used in this study is simply a compilation of information about a variety of topics, including yield, pesticide use, rainfall, and average temperature. This data collection consists of 33 characteristics or qualities in total. The crops soya beans, maze, potato, rice, paddy, wheat, and sorghum are included in this data collection. This data collection was made possible through the collaboration of the Food and Agriculture Organisation (FAO) and the World Data Bank, both of which make their data available to the public. The AdaBoost decision tree has achieved the highest level of accuracy possible when used to anticipate agricultural yield. Both the accuracy rate and the recall rate are quite high at 99 percent.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3