A simulation study of the effect of post-combustion amine-based carbon-capturing integrated with solar thermal collectors for combined cycle gas power plant

Author:

Ayyad Amir,Abbas Ayman,Elminshawy Nabil

Abstract

AbstractPost-combustion carbon capture with solvent designed to sequestrate carbon from power plant is a promising and well-known technology. However, a vital drawback is the reduction of the power plant output due to the energy required to separate captured CO2 from the solvent, known as a re-boiler duty. In this paper, two configurations were simulated and economically examined to mitigate the re-boiler duty and power loss from the 495 MW West Damietta power plant, Egypt. The first approach is to increase carbon concentrations in the feed to carbon capture plant by recycling part of exhaust gas back to the combustion chamber with different ratios (0%–35%), the second approach is implementing parabolic-trough solar collectors to handle the reboiler load instead of low-pressure steam extracted from the power plant. Both power and CO2 capturing plants were simulated using Aspen Hysys. Parabolic trough solar collector plant was simulated using system advisor model software. The results revealed that increasing carbon content led to a remarkable decrease in reboiler duty by up to around 20%. It was also found that integrating the solar plant with thermal storage system highly improved the optimum production compared to plant without thermal storage. Carbon increase also affected the levelized cost of energy which had 1.39% reduction and 6% decrease in carbon cost of avoidance using 35% recirculation ratio.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3