Abstract
AbstractFood contact materials (FCM) may contain complex mixtures of estrogenic chemicals. A yeast estrogen screen performed on high performance thin-layer chromatography plates (planar-YES, P-YES) is promising for analysis of such mixtures, as it could allow for better elucidation of effects compared with established methods in microtiter plates. However, the P-YES has not been directly compared with established methods. We compared the performance of a microtiter plate YES (lyticase-YES, L-YES) to P-YES on silica gel HPTLC plates using 17β-estradiol (E2), 20 chemicals representative of migrants from plastic FCM, and three migrates of coated metal food cans. Effective doses (ED10, ED50) and estradiol equivalencies were calculated for each chemical. Thirteen chemicals had calculable EDs in the L-YES or P-YES, with average EDs 13-fold (range 0.63–36) more potent in P-YES than in the L-YES. Normalized to E2, the median estrogenicity was within 1.5-fold (0.43–8.8) between the assays. Therefore, P-YES was as or more sensitive than L-YES but potencies relative to E2 were comparable between assays. With chromatography, the P-YES detected estrogenicity in coated metal cans, effects that were unmeasurable in L-YES. With the sample preparation methods used in this study, both YES assays are sufficiently sensitive to detect bisphenol A below the specific migration limit for plastic packaging (0.05 mg/kg food). This study demonstrates that P-YES outperforms L-YES because it is more sensitive, provides comparable estradiol equivalents, and circumvents confounding mixture effects. The P-YES will be useful for routine monitoring of FCM and toxicant identification in problematic materials.
Funder
Bundesamt für Lebensmittelsicherheit und Veterinärwesen
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry,Analytical Chemistry
Reference43 articles.
1. European Commission. Commission Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union. 2011.
2. Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ. 2019;651(Pt 2):3253–68.
3. Kirchnawy C, Mertl J, Osorio V, Hausensteiner H, Washüttl M, Bergmair J, et al. Detection and identification of oestrogen-active substances in plastic food packaging migrates. Packag Technol Sci. 2014;27(6):467–78.
4. European Commission. Commission Regulation (EU) 2017/644 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 589/2014 Official Journal of the European Union. 2017.
5. Groh KJ, Muncke J. In vitro toxicity testing of food contact materials: state-of-the-art and future challenges. Compr Rev Food Sci Food Saf. 2017;16(5):1123–50.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献