Feasibility of using quantitative 1H-NMR spectroscopy and ultra-microbalances for investigation of a PET microplastic reference material

Author:

Seghers John,Günther Marcel,Breidbach Andreas,Peez Nadine,Imhof Wolfgang,Emteborg Håkan

Abstract

AbstractHere, we report on the feasibility of using quantitative NMR and ultra-microbalances for additional measurements of the mass of poly-ethylene terephthalate (PET) particles in a reference material (RM). The microplastic (MP) PET particles were immobilised in solid NaCl following freeze-drying of a 1-ml NaCl suspension. The particles ranged from 30 to about 200 µm (Feretmin). In a 3-day process, more than 500 such units of PET particles in the NaCl carrier were prepared and later used in a large-scale inter-laboratory comparison. The homogeneity of PET in the salt carrier over these 500 units had previously been evaluated with respect to the mass of PET using an ultra-microbalance. In addition to the original results obtained by weighing, two independent results of quantitative 1H-NMR have been obtained for further investigation of this reference material together with one additional set of weighing data. The NMR data were used for confirmation of the weighed amount of PET (as weighing is non-specific for PET). Average masses of 0.293 ± 0.04 mg and 0.286 ± 0.03 mg of PET were obtained using two different ultra-microbalances (14% RSD for n = 14 and 9% RSD for n = 4, respectively). The corresponding 1H-NMR data was 0.300 ± 0.02 mg of PET (6.7% RSD for n = 5) and 0.345 ± 0.04 mg of PET (12.5% RSD for n = 14), respectively. The average mass of PET obtained by 1H-NMR measurements was in agreement with the weighed amounts within their standard deviations. A mean value of 0.306 mg PET with an expanded uncertainty of 0.058 mg (± 19% relative) was calculated, and it is traceable to the SI system of measurements. Measurement of PET by quantitative 1H-NMR spectroscopy is also reported for a water sample. The PET contained in one RM sample was transferred to 1 L of water to mimic a drinking water sample for microplastics. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3