Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor

Author:

Macchia Eleonora,Sarcina Lucia,Picca Rosaria Anna,Manoli Kyriaki,Di Franco Cinzia,Scamarcio Gaetano,Torsi Luisa

Abstract

AbstractEarly diagnosis of the infection caused by human immunodeficiency virus type-1 (HIV-1) is vital to achieve efficient therapeutic treatment and limit the disease spreading when the viremia is at its highest level. To this end, a point-of-care HIV-1 detection carried out with label-free, low-cost, and ultra-sensitive screening technologies would be of great relevance. Herein, a label-free single molecule detection of HIV-1 p24 capsid protein with a large (wide-field) single-molecule transistor (SiMoT) sensor is proposed. The system is based on an electrolyte-gated field-effect transistor whose gate is bio-functionalized with the antibody against the HIV-1 p24 capsid protein. The device exhibits a limit of detection of a single protein and a limit of quantification in the 10 molecule range. This study paves the way for a low-cost technology that can quantify, with single-molecule precision, the transition of a biological organism from being “healthy” to being “diseased” by tracking a target biomarker. This can open to the possibility of performing the earliest possible diagnosis.

Funder

Abo Akademi University

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3