Recovery of catalytic metals from leaching solutions of spent automotive catalytic converters using plant extracts

Author:

Nobahar Amir,Carlier Jorge DiasORCID,Costa Maria Clara

Abstract

AbstractThis study investigates the potential of hydroalcoholic extracts of Cistus ladanifer L., Erica Andevalensis and Rubus idaeus L. as a green method for the recovery of platinum group metals (PGMs) from both synthetic unimetallic solutions and multimetallic solutions obtained from the leaching of two different spent automotive catalytic converters (SACC). Experiments with unimetallic solutions revealed that E. andevalensis and R. idaeus extracts could separate about 70% of Pd and less than 40% of other tested metals (Al, Ce, Fe and Pt) from the solutions. Then, application of the plant extracts to two different SACCs leachates showed that E. andevalensis and R. idaeus extracts can induce high precipitation (> 60%) of Pd and Pt with co-precipitation of less than 20% of other metals. UV–Visible spectra analysis confirmed the bio-reduction of Pd2+ ions into Pd0 nanoparticles by R. idaeus extract, and Fourier transform infrared spectroscopy (FTIR) analysis revealed the contribution of functional groups of the phytochemicals present in the extract (such as phenols, flavonoids and anthocyanins) in the Pd2+ bio-reduction and stabilization. Afterward, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM–EDX) analysis of the precipitate obtained from one leachate with R. idaeus extract demonstrated the presence of Pd particles along with organic compounds and particles containing other metals. Therefore, particles were subjected to a washing step with acetone for further purification. Finally, scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX) analysis showed the high purity of the final Pd particles and high-resolution STEM allowed to determine their size variation of 2.5 to 17 nm with an average Feret size of 6.1 nm and confirmed their crystalline structure with an interplanar lattice distance of ~ 0.22 nm. This green approach offers various benefits including simplicity of Pd separation from the leachates as valuable nanoparticles that makes the process more feasible from economic and environmental standpoints. A process cost of ~ 20 $/g of Pd particles recovered was estimated (excluding manpower). Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3