Can analytics software measure end user computing electricity consumption?

Author:

Sutton-Parker JustinORCID

Abstract

AbstractThe purpose of this research is to answer the question, ‘can analytics software measure end user computing electricity consumption?’ The rationale being that the success of traditional methodologies, such as watt metres, is limited by newly evolved barriers such as mobility and scale (Greenblatt et al., in Field data collection of miscellaneous electrical loads in Northern California: initial results. Ernest Orlando Lawrence Berkeley National Laboratory research paper, pp 4–5, 2013). Such limitations significantly reduce the availability of end user computing use phase energy consumption field data (Karpagam and Yung, in J Clean Prod 156:828, 2017). This causes computer manufacturers to instead rely upon no-user present energy efficiency benchmarks (Energy Star, in Product finder, product, certified computers, results. Washington, D.C.: United States Department of Energy. https://www.energystar.gov/productfinder/product/certified-computers/results, 2021) to act as baseline data for product carbon footprint reports. As the benchmark approach is previously tested to cause scope 2 greenhouse gas emissions quantification to be inaccurate by − 48% to + 107% (Sutton-Parker, in Determining end user computing device Scope 2 GHG emissions with accurate use phase energy consumption measurement, 1877-0509. Amsterdam: Science Direct, Elsevier B.V., 2020), testing a new methodology that includes the impact of human–computer interaction is arguably of value. As such, the proposed method is tested using a distributed node based analytics software to capture both computer asset and human use profile data sets from one hundred and eleven computer users operating in a subject organisation for 30-days. The simple rationale is that the node, unlike a watt metre, is not restricted by location, can be deployed and monitored globally from a centralised location and can move with the computer to ensure constant measurement. The resulting data sets are used to populate a current use phase electricity consumption calculation data flow (Kawamoto et al., in Energy 27:255, 2001; Roth et al., in Energy consumption by office and telecommunications equipment in commercial buildings: energy consumption baseline, 2002) in order to examine for omissions. Additionally, to test for data accuracy, one computer user acts as a control subject, measuring electricity consumption with both a watt-metre and the analytics software. The rationale being that the watt-metre data is extensively proven to be accurate (Energy Star, in Energy star computers final version 8.0 Specification, Washington D.C., United States Department of Energy. https://www.energystar.gov/products/spec/computers_version_8_0_pd, 2020) and will therefore expose errors produced by the software in relation to power draw, on-time and resulting kilo-watt hours (kWh) values. Further to the data capture period, the findings are mixed. Positively, the new method overcomes the barriers of numerous, assorted devices (scale) operating in ever changing locations (mobility). This is achieved by the node reporting in real-time make and model asset data together with device specific electricity consumption and location data via internet technologies. Negatively, the control subject identifies that the electricity consumption values produced by the software are inaccurate by a relatively constant 48%. Furthermore, data omissions are experienced including the exclusion of computer displays caused by the node requiring an operating system to collect data. This latter point would exclude the energy consumption measurement and therefore concomitant greenhouse gas emissions of any displays connected to desktop or mobile computers. Consequently, whilst the research question is answered, the identification of the software exaggerating use phase energy consumption by 48% and excluding peripheral devices, determines the analytics methodology to be in need of further development. The rationale being that use phase consumption quantification is key to lifecycle assessment and greenhouse gas accounting protocol and both require high levels of accuracy (WBCSD and WRI, in The greenhouse gas protocol. A corporate accounting and reporting standard, Geneva, Switzerland and New York, USA. https://ghgprotocol.org/corporate-standard, 2004). It is therefore recommended that further research be undertaken to specifically address omissions and to reduce the over reporting aspect identified as caused by algorithms in the software used to calculate hardware power draw. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Reference79 articles.

1. Andrae ASG, Andersen O (2010) Life cycle assessments of consumer electronics—are they consistent? Int J Life Cycle Assess 15(8):827–836

2. Andrae ASG, Edler AT (2015) On global electricity usage of communication technology: trends to 2030. Challenges 6:117–157

3. Andre H, Ljunggren Soderman M, Nordelof A (2018) Resource and environmental impacts of using second-hand laptop computers: a case study of commercial reuse. Chalmers University of Technology, Gothenburg

4. Apple (2021) Your product’s environmental report card.’ Cupertino, USA: Apple Inc. https://www.apple.com/environment/

5. Arushanvan Y, Ekener-Petersen E, Finnveden G (2014) Lessons learned—review of LCAs for ICT products and services. Comput Ind, Amsterdam

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Architecture of Renewable Energy System via Non-Terrestrial Communication Nodes;2023 31st Southern African Universities Power Engineering Conference (SAUPEC);2023-01-24

2. Determining UK government scope 2 and 3 computer greenhouse gas emissions;Procedia Computer Science;2023

3. Low-Cost Energy Consumption Monitoring System Using NodeMCU;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3