Abstract
AbstractAbout half of the product from iron-based high-temperature Fischer–Tropsch synthesis is an aqueous product containing dissolved oxygenates. Volatile oxygenates can be recovered by distillation, but the bulk of the carboxylic acids remain in the water, which is called acid water. Fractional freezing was explored as a process for producing a more concentrated carboxylic acid solution from which the carboxylic acids could be recovered as petrochemical products, while concomitantly producing a cleaner wastewater. Solid–liquid equilibrium data were collected for aqueous solutions of acetic acid, propionic acid, and butyric acid. A synthetic Fischer–Tropsch acid water mixture (0.70 wt% acetic acid, 0.15 wt% propionic acid, and 0.15 wt% butyric acid) was prepared and the liquid phase concentrations of the acid species at solid–liquid equilibrium were determined. Control experiments with material balance closure on each of the carboxylic acid species were performed at selected conditions. Having more than one carboxylic acid species present in the mixture meaningfully changed the solid–liquid equilibrium versus temperature of the system. The carboxylic acids partitioned between the solid phase and the liquid phase and a practical design would require multiple duty-controlled solid–liquid equilibrium stages, with most of the separation taking place in the temperature range 0 to − 5 °C.
Funder
Helmholtz-Alberta Initiative
Natural Resources Canada
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献