Investigating Total Collisions of the Newtonian N-Body Problem on Shape Space

Author:

Reichert Paula

Abstract

AbstractWe analyze the points of total collision of the Newtonian gravitational system on shape space (the relational configuration space of the system). While the Newtonian equations of motion, formulated with respect to absolute space and time, are singular at the point of total collision due to the singularity of the Newton potential at that point, this need not be the case on shape space where absolute scale doesn’t exist. We investigate whether, adopting a relational description of the system, the shape degrees of freedom, which are merely angles and their conjugate momenta, can be evolved through the points of total collision. Unfortunately, this is not the case. Even without scale, the equations of motion are singular at the points of total collision (and only there). This follows from the special behavior of the shape momenta. While this behavior induces the singularity, it at the same time provides a purely shape-dynamical description of total collisions. By help of this, we are able to discern total-collision solutions from non-collision solutions on shape space, that is, without reference to (external) scale. We can further use the shape-dynamical description to show that total-collision solutions form a set of measure zero among all solutions.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Reference12 articles.

1. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1989)

2. Barbour, J., Koslowski, T., Mercati, F.: A gravitational origin of the arrows of time. (2013). arXiv:1310.5167 [gr-qc]

3. Barbour, J., Koslowski, T., Mercati, F.: Identification of a gravitational arrow of time. Phys. Rev. Lett. 113, 181101 (2014). arXiv:1409.0917 [gr-qc]

4. Barbour, J., Koslowski, T., Mercati, F.: Entropy and the typicality of universes. (2015). ArXiv:1507.06498 [gr-qc]

5. Faddeev, L.D.: The Feynman integral for singular Lagrangians. Theoret. Math. Phys. 1(1), 1–13 (1969)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3