Symplectic Quantization II: Dynamics of Space–Time Quantum Fluctuations and the Cosmological Constant

Author:

Gradenigo GiacomoORCID

Abstract

AbstractThe symplectic quantization scheme proposed for matter scalar fields in the companion paper (Gradenigo and Livi, arXiv:2101.02125, 2021) is generalized here to the case of space–time quantum fluctuations. That is, we present a new formalism to frame the quantum gravity problem. Inspired by the stochastic quantization approach to gravity, symplectic quantization considers an explicit dependence of the metric tensor $$g_{\mu \nu }$$ g μ ν on an additional time variable, named intrinsic time at variance with the coordinate time of relativity, from which it is different. The physical meaning of intrinsic time, which is truly a parameter and not a coordinate, is to label the sequence of $$g_{\mu \nu }$$ g μ ν quantum fluctuations at a given point of the four-dimensional space–time continuum. For this reason symplectic quantization necessarily incorporates a new degree of freedom, the derivative $${\dot{g}}_{\mu \nu }$$ g ˙ μ ν of the metric field with respect to intrinsic time, corresponding to the conjugated momentum $$\pi _{\mu \nu }$$ π μ ν . Our proposal is to describe the quantum fluctuations of gravity by means of a symplectic dynamics generated by a generalized action functional $${\mathcal {A}}[g_{\mu \nu },\pi _{\mu \nu }] = {\mathcal {K}}[g_{\mu \nu },\pi _{\mu \nu }] - S[g_{\mu \nu }]$$ A [ g μ ν , π μ ν ] = K [ g μ ν , π μ ν ] - S [ g μ ν ] , playing formally the role of a Hamilton function, where $$S[g_{\mu \nu }]$$ S [ g μ ν ] is the standard Einstein–Hilbert action while $${\mathcal {K}}[g_{\mu \nu },\pi _{\mu \nu }]$$ K [ g μ ν , π μ ν ] is a new term including the kinetic degrees of freedom of the field. Such an action allows us to define an ensemble for the quantum fluctuations of $$g_{\mu \nu }$$ g μ ν analogous to the microcanonical one in statistical mechanics, with the only difference that in the present case one has conservation of the generalized action $${\mathcal {A}}[g_{\mu \nu },\pi _{\mu \nu }]$$ A [ g μ ν , π μ ν ] and not of energy. Since the Einstein–Hilbert action $$S[g_{\mu \nu }]$$ S [ g μ ν ] plays the role of a potential term in the new pseudo-Hamiltonian formalism, it can fluctuate along the symplectic action-preserving dynamics. These fluctuations are the quantum fluctuations of $$g_{\mu \nu }$$ g μ ν . Finally, we show how the standard path-integral approach to gravity can be obtained as an approximation of the symplectic quantization approach. By doing so we explain how the integration over the conjugated momentum field $$\pi _{\mu \nu }$$ π μ ν gives rise to a cosmological constant term in the path-integral approach.

Funder

Gran Sasso Science Institute - GSSI

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Reference34 articles.

1. Gradenigo, G., Livi, R.: Symplectic quantization I: dynamics of quantum fluctuations in a relativistic field theory. arXiv:2101.02125 (2021)

2. Polyakov, A.: Quantum geometry of bosonics strings. Phys. Lett. 103, 207 (1981)

3. Green, M.B., Schwartz, J.H., Witten, E.: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1987). (Superstring theory: Vols. I, II)

4. Polchinski, J.: Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1998). (String theory)

5. Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, H., Oz, Y.: Large-N field theories, string theory and gravity. Phys. Rep. 323(3–4), 183–386 (2000)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3