2-Desaza-annomontine (C81) impedes angiogenesis through reduced VEGFR2 expression derived from inhibition of CDC2-like kinases
-
Published:2024-02-26
Issue:2
Volume:27
Page:245-272
-
ISSN:0969-6970
-
Container-title:Angiogenesis
-
language:en
-
Short-container-title:Angiogenesis
Author:
Zech T. J.ORCID, Wolf A., Hector M., Bischoff-Kont I., Krishnathas G. M., Kuntschar S., Schmid T.ORCID, Bracher F.ORCID, Langmann T., Fürst R.ORCID
Abstract
AbstractAngiogenesis is a crucial process in the progression of various pathologies, like solid tumors, wet age-related macular degeneration, and chronic inflammation. Current anti-angiogenic treatments still have major drawbacks like limited efficacy in diseases that also rely on inflammation. Therefore, new anti-angiogenic approaches are sorely needed, and simultaneous inhibition of angiogenesis and inflammation is desirable. Here, we show that 2-desaza-annomontine (C81), a derivative of the plant alkaloid annomontine previously shown to inhibit endothelial inflammation, impedes angiogenesis by inhibiting CDC2-like kinases (CLKs) and WNT/β-catenin signaling. C81 reduced choroidal neovascularization in a laser-induced murine in vivo model, inhibited sprouting from vascular endothelial growth factor A (VEGF-A)-activated murine aortic rings ex vivo, and reduced angiogenesis-related activities of endothelial cells in multiple functional assays. This was largely phenocopied by CLK inhibitors and knockdowns, but not by inhibitors of the other known targets of C81. Mechanistically, CLK inhibition reduced VEGF receptor 2 (VEGFR2) mRNA and protein expression as well as downstream signaling. This was partly caused by a reduction of WNT/β-catenin pathway activity, as activating the pathway induced, while β-catenin knockdown impeded VEGFR2 expression. Surprisingly, alternative splicing of VEGFR2 was not detected. In summary, C81 and other CLK inhibitors could be promising compounds in the treatment of diseases that depend on angiogenesis and inflammation due to their impairment of both processes.
Graphical abstract
Funder
Deutsche Forschungsgemeinschaft Johann Wolfgang Goethe-Universität, Frankfurt am Main
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Hinsbergh VM, Vermeulen VWM, Waltenberger PB, Weinstein J, Xin BM, Yetkin-Arik H, Yla-Herttuala B, Yoder S, Griffioen MC AW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532. https://doi.org/10.1007/s10456-018-9613-x 2. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144 3. Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133. https://doi.org/10.1177/1947601911423654 4. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19(10):2003–2012. https://doi.org/10.1016/j.cellsig.2007.05.013 5. Cantelmo AR, Pircher A, Kalucka J, Carmeliet P (2017) Vessel pruning or healing: endothelial metabolism as a novel target? Expert Opin Ther Targets 21(3):239–247. https://doi.org/10.1080/14728222.2017.1282465
|
|