Leveraged least trimmed absolute deviations

Author:

Sudermann-Merx Nathan,Rebennack SteffenORCID

Abstract

AbstractThe design of regression models that are not affected by outliers is an important task which has been subject of numerous papers within the statistics community for the last decades. Prominent examples of robust regression models are least trimmed squares (LTS), where the k largest squared deviations are ignored, and least trimmed absolute deviations (LTA) which ignores the k largest absolute deviations. The numerical complexity of both models is driven by the number of binary variables and by the value k of ignored deviations. We introduce leveraged least trimmed absolute deviations (LLTA) which exploits that LTA is already immune against y-outliers. Therefore, LLTA has only to be guarded against outlying values in x, so-called leverage points, which can be computed beforehand, in contrast to y-outliers. Thus, while the mixed-integer formulations of LTS and LTA have as many binary variables as data points, LLTA only needs one binary variable per leverage point, resulting in a significant reduction of binary variables. Based on 11 data sets from the literature, we demonstrate that (1) LLTA’s prediction quality improves much faster than LTS and as fast as LTA for increasing values of k and (2) that LLTA solves the benchmark problems about 80 times faster than LTS and about five times faster than LTA, in median.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,Business, Management and Accounting (miscellaneous)

Reference49 articles.

1. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche J, Vianu V (eds) Database theory—ICDT 2001. Springer, Berlin, pp 420–434

2. Bassett GW Jr (1991) Equivariant, monotonic, 50% breakdown estimators. Am Stat 45(2):135–137

3. Bernholt T (2006) Robust estimators are hard to compute. Tech. rep

4. Bertsimas D, Dunn J (2019) Machine learning under a modern optimization lens. Dynamic Ideas LLC. https://books.google.de/books?id=g3ZWygEACAAJ

5. Bertsimas D, King A, Mazumder R (2016) Best subset selection via a modern optimization lens. Ann Stat 44:813–852

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3