New fault diagnosis approaches for detecting the bearing slight degradation
Author:
Funder
University of Guilan
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Link
http://link.springer.com/content/pdf/10.1007/s11012-019-01116-x.pdf
Reference44 articles.
1. Li C, Liang M (2012) Continuous-scale mathematical morphology-based optimal scale band demodulation of impulsive feature for bearing defect diagnosis. J Sound Vib 331:5864–5879. https://doi.org/10.1016/j.jsv.2012.07.045
2. Meng L, Xiang J, Wang Y, Jiang Y, Gao H (2015) A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition. Mech Syst Signal Process 50:101–115. https://doi.org/10.1016/j.ymssp.2014.06.004
3. Liu X, Bo L, He X, Veidt M (2012) Application of correlation matching for automatic bearing fault diagnosis. J Sound Vib 331:5838–5852. https://doi.org/10.1016/j.jsv.2012.07.022
4. Jiang F, Zhu Z, Li W, Chen G, Zhou G (2013) Robust condition monitoring and fault diagnosis of rolling element bearings using improved EEMD and statistical features. Meas Sci Technol 25:025003. https://doi.org/10.1088/0957-0233/25/2/025003
5. McFadden PD, Smith JD (1984) Vibration monitoring of rolling element bearings by the high-frequency resonance technique—a review. Tribol Int 17:3–10. https://doi.org/10.1016/0301-679X(84)90076-8
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SPLSTM: A Prediction Model for Operational Faults in Rotating Machinery;IEEE Sensors Journal;2024-04-01
2. Sparse Frequency Representation Using Autocorrelation of Variational Mode Functions to Detect Compound Fault in Rotating Machines;Mechanisms and Machine Science;2024
3. Fault state identification of rolling bearings based on deep transfer convolutional autoencoder and a new health indicator;Measurement;2023-12
4. Predictive maintenance decision-making for variable faults with non-equivalent costs of fault severities;Advanced Engineering Informatics;2023-04
5. Periodicity Intensity Reveals Insights into Time Series Data: Three Use Cases;Algorithms;2023-02-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3