Abstract
AbstractLetGbe a topological group, and letC(G) denote the algebra of continuous, complex valued functions onG. We find the solutions$$f,g,h \in C(G)$$f,g,h∈C(G)of the Levi-Civita equation$$\begin{aligned} f(xy) = f(x)h(y) + g(x)f(y), \ x,y \in G, \end{aligned}$$f(xy)=f(x)h(y)+g(x)f(y),x,y∈G,which is an extension of the sine addition law. Representations ofGon$$\mathbb {C}^2$$C2play an important role. As a corollary we get the solutions$$f,g \in C(G)$$f,g∈C(G)of the sine subtraction law$$f(xy^*) = f(x)g(y) - g(x)f(y)$$f(xy∗)=f(x)g(y)-g(x)f(y),$$x,y \in G$$x,y∈G, in which$$x \mapsto x^*$$x↦x∗is a continuous involution, meaning that$$(xy)^* = y^*x^*$$(xy)∗=y∗x∗and$$x^{**} = x$$x∗∗=xfor all$$x,y \in G$$x,y∈G.
Funder
Royal Danish Library, Aarhus University Library
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics
Reference15 articles.
1. Aczél, J., Dhombres, J.: Functional equations in several variables: with applications to mathematics, information theory and to the natural and social sciences. Encyclopedia of Mathematics and its Applications, 31. Cambridge University Press, Cambridge (1989)
2. Ajebbar, O., Elqorachi, E.: The cosine-sine functional equation on a semigroup with an involutive automorphism. Aequ. Math. 91(6), 1115–1146 (2017)
3. Aserrar, Y., Elqorachi, E.: A d’Alembert type functional equation on semigroups. arXiv:2210.09111 [math.FA]
4. Aserrar, Y., Elqorachi, E.: Cosine and Sine addition and subtraction law with an automorphism. arXiv:2302.10263v1 [math.FA] (2023)
5. Bourbaki, N.: Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie. Actualités Scientifiques et Industrielles, No. 1349, p. 320. Hermann, Paris (1972)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献