Abstract
AbstractThis article introduces the novel notion of dimension preserving approximation for continuous functions defined on [0, 1] and initiates the study of it. Restrictions and extensions of continuous functions in regards to fractal dimensions are also investigated.
Funder
Technische Universität München
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics
Reference26 articles.
1. Akhtar, M.N., Prem Prasad, M.G., Navascués, M.A.: Box dimensions of $$\alpha $$-fractal functions. Fractals 24(3), 1650037 (2016)
2. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)
3. Bárány, B., Hochman, M., Rapaport, A.: Hausdorff dimension of planar self-affine sets and measures. Invent. Math. 216(3), 601–659 (2019)
4. Bárány, B., Rams, M., Simon, K.: Dimension theory of some non-Markovian repellers part 2: Dynamically defined and Function graphs. arXiv:1901.04037v1 (2019)
5. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献