Abstract
AbstractIn this paper we consider a generalized monomial or polynomial $$ f : \mathbb {R}\rightarrow \mathbb {R}$$
f
:
R
→
R
that satisfies the additional equation $$ f(x) f(y) = 0 $$
f
(
x
)
f
(
y
)
=
0
for the pairs $$ (x,y) \in D \,$$
(
x
,
y
)
∈
D
, where $$ D \subseteq {\mathbb {R}}^{2} $$
D
⊆
R
2
is given by some algebraic condition. In the particular cases when f is a generalized polynomial and there exist non-constant regular polynomials p and q that fulfill $$\begin{aligned} D = \{\, (p(t),q(t)) \,\vert \, t \in \mathbb {R}\,\} \end{aligned}$$
D
=
{
(
p
(
t
)
,
q
(
t
)
)
|
t
∈
R
}
or f is a generalized monomial and there exists a positive rational m fulfilling $$\begin{aligned} D = \{\, (x,y) \in {\mathbb {R}}^{2} \,\vert \, x^2 - m y^2 = 1 \,\}, \end{aligned}$$
D
=
{
(
x
,
y
)
∈
R
2
|
x
2
-
m
y
2
=
1
}
,
we prove that $$ f(x) = 0 $$
f
(
x
)
=
0
for all $$ x \in \mathbb {R}\,$$
x
∈
R
.
Funder
Hungarian Scientific Research Fund
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics
Reference8 articles.
1. Boros, Z., Fechner, W.: An alternative equation for polynomial functions. Aequationes Math. 89(1), 17–22 (2015)
2. Boros, Z., Fechner, W., Kutas, P.: A regularity condition for quadratic functions involving the unit circle. Publ. Math. Debrecen 89(3), 297–306 (2016)
3. Boros, Z., Garda-Mátyás, E.: Conditional equations for quadratic functions. Acta Math. Hungar. 154(2), 389–401 (2018)
4. Halter-Koch, F., Reich, L., Schwaiger, J.: On products of additive functions. Aequationes Math. 45, 83–88 (1993)
5. Kominek, Z., Reich, L., Schwaiger, J.: On additive functions fulfilling some additional condition. Sitzungsber. Abt. II(207), 35–42 (1998)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献