Author:
Blecher Aubrey,Knopfmacher Arnold
Abstract
AbstractWe extend the notion of bargraphs as first quadrant, semi-perimeter defined lattice paths to that of a bargraph prefix where we relax the bargraph defining parameters and allow the bargraph to extend into negative territory. A bargraph prefix is any initial section of a bargraph. Generating functions for the prefixes which separately track the number of up, down and horizontal steps are found. The asymptotics for the average height of the last prefix step in the different bargraph extensions is given.
Funder
University of the Witwatersrand
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,General Mathematics
Reference14 articles.
1. Baril, J.L., Ramirez, J. L., Simbaqueba, L.: Counting prefixes of skew Dyck paths, J. Integer Sequ., 24, Article 21.9 (2021)
2. Blecher, A., Brennan, C., Knopfmacher, A.: Combinatorial parameters in bargraphs. Quaest. Math. 39, 619–635 (2016)
3. Bousquet-Mélou, M., Rechnitzer, A.: The site perimeter of bargraphs. Adv. Appl. Math. 31, 86–112 (2003)
4. Deutsch, E., Elizalde, S.: Statistics on bargraphs viewed as cornerless Motzkin paths. Discret. Appl. Math. 221, 54–66 (2017)
5. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)